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Abstract
In this paper, we explore how the audio respiration signal can contribute to multimodal analysis of movement qualities. Within
this aim, we propose two novel techniques which use the audio respiration signal captured by a standard microphone placed
near to mouth and supervised machine learning algorithms. The first approach consists of the classification of a set of acoustic
features extracted from exhalations of a person performing fluid or fragmented movements. In the second approach, the
intrapersonal synchronization between the respiration and kinetic energy of body movements is used to distinguish the same
qualities. First, the value of synchronization between modalities is computed using the Event Synchronization algorithm.
Next, a set of features, computed from the value of synchronization, is used as an input to machine learning algorithms. Both
approaches were applied to the multimodal corpus composed of short performances by three professionals performing fluid
and fragmented movements. The total duration of the corpus is about 17 min. The highest F-score (0.87) for the first approach
was obtained for the binary classification task using Support Vector Machines (SVM-LP). The best result for the same task
using the second approach was obtained using Naive Bayes algorithm (F-score of 0.72). The results confirm that it is possible
to infer information about the movement qualities from respiration audio.

Keywords Movement expressive qualities · Respiration · Intrapersonal synchronization

1 Introduction

Movement expressive qualities describe how a movement
is performed [2]. The same movement can be performed
with different qualities, e.g., in a fluid, fragmented, hesi-
tant, impulsive, or contracted way. It has been shown that
movement qualities might communicate interpersonal rela-
tions [29], personality traits [5], cultural background [44],
communicative intentions [8] and emotional states [12].

Many researchers [24,40,56] investigatedmovement qual-
ities and encoded them into categories. Probably the most
well known classification of themovement qualities was pro-
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posed by Rudolf Laban [27]. The Laban system has four
major components: Body, Effort, Shape, and Space. In partic-
ular, Effort and Shape are primarily concerned on movement
quality. The Effort is defined by 4 bipolar subcomponents: (i)
Space denotes relation with the surrounding space; it can be
Direct or Indirect; (ii) Weight describes the impact of move-
ment; it can be Strong or Light; (iii) Time corresponds to the
urgency of movement; it can be Sudden or Sustained, and
(iv) Flow defines the control of movement; it can be Bound
or Free. The Shape is characterized by three subcomponents:
Shape Flow, Directional, and Shaping/Carving.

Movement qualities are a very relevant aspect of dance,
where, e.g., they convey emotion to external observers, and
of various sport activities, where they are factors influencing
the evaluation of the performance (e.g., in Karate [30]). They
also play an important role in rehabilitation (e.g., Parkinson
disease and chronic pain [49]), therapy (e.g., autism [39]),
and entertainment (e.g., video-games [6]). Several compu-
tational models and analysis techniques for assessing and
measuring movement qualities have been proposed (see e.g.,
[32] for a review), as well as algorithms to automatically
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detect and compute movement qualities (see Sect. 2.4 for the
detailed overview).

In this paper, we explore whether it is possible to con-
tribute to movement qualities recognition by analyzing the
audio of respiration. Respiration is of paramount impor-
tance for body movement. The respiration pattern might
provoke certain visible movements, e.g., in case of laughter
[31] or fatigue [25]. The breathing rhythm can be influ-
enced by body movements, e.g., bowing usually corresponds
to the expiration phase. Rhythm of respiration is synchro-
nized with rhythmic motoric activities such as running or
rowing [21]. Several physical activities such as yoga or
tai-chi explicitly connect physical movement to respiration
patterns. There exist several techniques to measure the res-
piration e.g., through respiration belts. In this paper, we
collect the respiration data using the standard microphone
placed between nose and mouth. It allows us to collect
low-intrusively rich information about the human breath-
ing.

To show that it is possible to infer how a person moves
from the audio of respiration, we propose two exploratory
studies aiming to distinguish fluid and fragmented move-
ments. We intentionally focus on these relatively easy dis-
tinguishable and broad movement categories. If our attempt
is successful (i.e., audio respiration data provides the suf-
ficient information), in the future, more difficult tasks can
be addressed, e.g., classification of more subtle movement
qualities e.g., defined by Laban.

In this work dancers were used to collect the multi-
modal data of full-body movements as they are used to
display a huge variety of movement qualities, and they
dedicate a lot of effort and time to exercise their expres-
sive vocabulary. Thus, one can expect that various perfor-
mances by the same dancer, conveying different movement
qualities, can provide a solid ground to base our study
upon.

The rest of the paper is organized as follows: in Sect. 2, we
present existing works on analysis of human movement and
of respiration signals; in Sect. 3 we describe the movement
qualities we focus on. Section 4 introduces the overview of
proposed approaches and Sect. 5 explains the data collection
procedure. The two approaches for qualities classification are
presented in details in Sects. 6 and 7. We conclude the paper
in Sect. 8.

2 State of the art

2.1 Methods for measuring the respiration

Inmost of theworks that consider respiration, data is captured
with respiration sensors such as belt-like strips placed on
the chest (e.g., [26,58]), or with other dedicated devices. An

example of such a device is theCO2100Cmodule byBiopac1

that measures the quantity of CO2 in the exhaled air. This
sensor is able to detect very slight changes of carbon dioxide
concentration levels. Several alternative solutions were pro-
posed (see [17,43] for recent reviews). Folke and colleagues
[17] proposed three major categories of measurements for
the respiration signal:

– movement, volume, and tissue composition measure-
ments, e.g., transthoracic impedance measured with skin
electrodes placed on chest;

– air flow measurements, e.g., nasal thermistors;
– blood gas concentration measurements, e.g., the pulse
- oximetry method that measures oxygen saturation in
blood.

The choice of measurement device influences what kind
of features can be extracted from the respiration data. Boiten
at al. [7] distinguished three classes of approaches to process
the respiration signals: (1) the volume and timing parameters,
(2) the measures regarding the morphology of the breathing
curve, (3) the measures reflecting gas exchange. The first
group includes features such as: respiration rate (RR), dura-
tion of a respiratory cycle or duration of the interval between
the phases. Mean inspiratory (or expiratory) flow rate is an
example of the second type of features. Finally, features of
the third type measure the quantity of gases in exhaled air.

Recently Cho and colleagues [13] proposed to use the
low cost thermal camera to track the respiration phases. The
approach was based on tracking the nostril of the user and
analyzing temperature variations in this face area to infer
inhalation and exhalation cycles.

Another approach is to use Inertial Measurement Units
(IMUs). In [28] a single IMU sensor placed on the person’s
abdomen is used to extract the respiration pattern. The raw
signal captured with the IMU device was filtered with an
adaptive filter based on energy expenditure (EE) to remove
frequencies that were not related to respiration depending on
the type of physical activity: Low EE (e.g., sitting) Medium
EE (e.g., walking), and High EE (e.g., running).

2.2 Measuring respiration from the audio signal

Some researchers analyzed the respiration sounds captured
on the chest wall or trachea (see [34] for the review). They
focused on detecting different dysfunctions of the respira-
tory system by comparing the values of acoustic features
between healthy people and patients with some respiratory
problems and different pathology classification (e.g., [51]).
The audio signalwas also used to segment the respiration into
phases. For instance, Huq and colleagues [22] distinguished

1 http://www.biopac.com/.
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between the respiration phases using the average power and
log-variance of the band-pass filtered tracheal breath. In par-
ticular, they found the strongest differences between the two
respiratory phases in the intervals 300–450 Hz and 800–
1000 Hz for average power and log-variance respectively.
Similarly, Jin and colleagues [23] segmented breath using
tracheal signals through genetic algorithms.

Acoustic features of respiration captured by the micro-
phone placed near mouth and nose area were explored by
Song to diagnose the pneumonia in children [50]. Using
supervised learning with more than 1000 acoustic fea-
tures (prosodic, spectral, cepstral features and their first
and second-order coefficients) he obtained 92% accuracy
for binary classification task: pneumonia vs. non-pneumonia
[50].

Pelegrini and Ciceri [36] studied interpersonal breath-
ing coordination during a joint action. In this context, they
checked whether breathing sounds convey information about
the activity being performed. They proposedmultilayer anal-
ysis to respiratory behavior during different joint actions
composed of temporal (e.g., respiration rate) and acoustic
(e.g., spectral centroid) features. Themultilayer analysis pro-
vided quantitative measurements of respiratory behavior that
enabled descriptions and comparisons between conditions
and actions showing the differences between different joint
actions performed by participants.

Wlodarczak and Heldner [58] studied the communicative
functions of respiratory sounds. They found that acoustic
intensity of inhalation is the feature that allows one to detect
the forthcoming turn-takings. The inhalations that precede
long speech are louder than those which occur during no-
speech activity or before short backchannel verbal utterances.

In [1], the audio of respiration capturedwith amicrophone
placed near the mouth was used to detect the respiration
phases. First authors isolated the respiration segments using
a Voice Activity Detection (VAD) algorithm based on short
time energy (STE). Next, they computed Mel-frequency
cepstrum coefficients (MFCC) of respiration segments, and
they applied a linear thresholding on MFCC to distinguish
between the two respiration phases.

Yahya and colleagues [59] also detected respiration phases
in audio data. Again, a VAD algorithm was applied to the
audio signal to identify the respiration segments. Then, sev-
eral low-level audio features extracted from the segments
were usedwith a Support VectorMachine (SVM) classifier to
separate the exhilaration segments from the inspiration ones.

Ruinskiy and colleagues [45] aimed to separate respiration
segments from voice segments in audio recordings. First, for
each participant, they created a respiration template using
a mean cepstrogram matrix. Next they measured similarity
between the template and an input segment in order to classify
the latter as a breathy or not breathy one.

2.3 Respiration and physical activities

Several works analyzed respiration in sport activities such
as walking and running [4,21], and rowing [3]. Respiration
data was also used to detect emotions [26]. Bernasconi and
Kohl [4] studied the effect of synchronization between respi-
ration and legs movement rhythms for efficiency of physical
activities such as running or cycling. They measured syn-
chronization as a percentage of the coincidence between the
beginning of a respiration phase and the beginning of a step
(or a pedaling cycle). According to their results, the higher
synchronization results in higher efficiency and lower con-
sumption of oxygen.

Bateman and colleagues [3] measured synchronization
between the start of a respiration phase, and the phase of
a stroke in rowing by expert and non-expert rowers. Respira-
tion phases were detected with a nostril thermistor, whereas
the strokephase (1 out of 4)was detected from the spinal kine-
matics and the force applied to the rowing machine. When
the synchronization was higher, the higher stroke rate was
observed for expert rowers. Additionally, themost frequently
observed pattern was the two breath cycles per stroke.

Schmid and colleagues [47] analyzed synchronization
between postural sway and respiration patterns capturedwith
a respiratory belt at chest level. A difference was observed
in respiration frequency and amplitude between sitting and
standing position.

2.4 Multimodal analysis and detection of movement
qualities

Recently Alaoui and colleagues [16] showed that combin-
ingpositional, dynamic andphysiological information allows
for a better characterization of different qualities of Laban’s
Effort than in unimodal recognition systems. In their work,
positional data frommotion capture system is associatedwith
Space component, the jerk extracted from the accelerometer
placed on the wrist is related to Time component, while the
muscle activation signal from the EMG sensor is associated
with Weight component. Nevertheless, most of the existing
works use motion capture data to recognize and measure
movement qualities. For instance, Ran and colleagues [42]
applied supervised machine learning to detect Laban quali-
ties fromKinect data. For this purpose, they proposed a large
set of descriptors composed of 100 features related toLaban’s
qualities and other 6000 describing the Kinect skeleton data.
For example, Suddenness is computed using the acceleration
skewness. In the final step, multitask learning was applied
to 18 Laban qualities (Effort Actions, Shape Qualities, and
Shape Change) resulted in F-score of 0.6.

Hachimura and colleagues [20] developed a system to
detect the poses which correspond to four Laban subcom-
ponents: Space, Weight, Shape, and Time and validated their
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method as compared to experts annotation. First, they com-
puted four high-level features, each of them addressing one
subcomponent. Next, by observing the change over time of
these feature values, body movements corresponding to the
different Laban’s subcomponents were extracted.

Swaminathan and colleagues [52] proposed a Bayesian
fusion approach for identifying the Shape component from
motion capture data. Their method used a dynamic Bayesian
network to process movement. The results are 94.9% for
recall and 83.13% for precision.

Truong and colleagues [54] proposed around 80 descrip-
tors inspired by Laban’s movement qualities for machine
learning based gesture recognition. For example,Weight sub-
component is estimated with 30 descriptors computed by
applying 5 operators (mean, standard deviation, maximal
amplitude, number of local minima, relative temporal instant
of the global minimum value) to the vertical components of
the velocity and acceleration of 3 joints (the center of the
hip, the left and right hand). The descriptors were extracted
from the Kinect data of basic iconic and metaphoric gestures
and several supervised classification algorithmswere applied
obtaining F-score around 97%.

Samadani and colleagues [46] proposed a set of continu-
ous measures of Laban Effort and Shape components. The
values of four components: Weight, Time, Space, and Flow
are computed froma set of low level features such as position,
kinetic energy, velocity, acceleration, and jerk extracted from
the motion capture data of hand and arm movements. For
instance, the Weight was estimated by computing the max-
imum of the sum of the kinetic energy of the moving parts
of the body. Similarly, the Shape Directional was computed
from the average trajectory curvature. The approach was val-
idated by measuring the correlation between the algorithm
values and the expert annotations. The results are up to 81%
on Effort components.

Similarly, other researchers proposed several systems to
compute different than Laban’s movement qualities from the
video. With the aim of emotion classification from the full-
body movements Glowinski and colleagues [19] extracted
movement features such as: Smoothness, Impulsiveness,
Kinetic Energy, Spatial Extent. Similar approach was used
by Caridakis and colleagues [11], who extracted movement
qualities from the video stream in real time with the purpose
of facilitating the interaction between humanoid computer
interface and human user. For instance, Fluidity was com-
puted as the sum of the variance of the norms of the motion
vectors, Power as the first derivative of the motion vector,
Spatial Extent as the distance between hands, and the Over-
all Activity as the sum of the motion vectors.

Regarding using different data sources than motion
captured and video data, Silang Maranan and colleagues
[48] used one wrist-mounted accelerometer and supervised
machine learning to detect eight Basic Effort Actions of

Laban’s system. In their approach, multiple sliding timewin-
dows were used to analyze movement data incrementally by
examining it across three different time scales. Therefore,
around400 low-levelmotion featureswere extracted from the
accelerometer data, which allowed them to train the model
with a weighted accuracy between 55 and 91% depending
on the type of Action. Ward and colleagues [57] proposed an
exploratory study of electromyography (EMG) signals cor-
responding to the execution of Free and Bound movements.
For this purpose, authors computed the amplitudes of EMG
signal from theMyo deviceswhichwere placed on the dancer
forearms. The same two data sources were fused in the work
proposed by Niewiadomski and colleagues [33] to compute
two movement qualities from the vocabulary of the choreog-
rapher Vittorio Sieni.

3 Movement testbed

Our main goal in this paper is to show that the informa-
tion obtained from the audio respiration signal is useful to
compute how a person moves in terms of her expressive-
ness. We specifically focus on two very different types of
movements: namely fluid and fragmentedmovements. These
two movement categories substantially differ in terms of
motor planning. Fluid movements are continuous, smooth
and harmonious performances of a global (i.e., involving
the whole body) motor plan, and without interruptions [37].
Fragmented movements are characterized by several abrupt
interruptions and re-planning motor strategies.

Fluid and fragmented movements are present in dance
context. Fluidity is the fundamental quality e.g., for classical
ballet, while Fragmentedmovements are a part of the expres-
sive vocabularies of themany contemporary choreographers,
e.g., Sagi Gross Company2.

Examples of fluid and fragmentedmovements can be seen
in the video attached to this article as Supplementary Mate-
rial.

Although neither fluid nor fragmented movements appear
in Laban’s terminology, there are several reasons to focus
on them in our explanatory study. First, in work, Vaessen
and colleagues [55] search for distinct brain responses in
fMRI data to the visual stimuli of full body movements,
which differ in terms of motor planning. Second, several
researchers observed spontaneous synchronization between
the full-body movements and respiratory rhythms [4,14,35].
This phenomena is often explained with the concept of
entrainment, i.e., by a temporal locking process in which one
system’s motion or signal frequency entrains the frequency
of another system [53]. Motivating from these studies, we
expect that differences in motor planning and its execution

2 www.grossdancecompany.com.
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might also influence the respiration patterns and intraper-
sonal synchronization of respiration and body movements.
Third, we would like to recall that, because of the differences
in terms of motor planning mentioned above, it is impossible
for any movement to be fluid and fragmented at the same
time (although a movement can be neither fluid nor frag-
mented). This important property allow us to perform binary
discrimination.

4 Overview of the approach

Common approach to recognize movement qualities is
using high-precisionmotion capture systems, then extracting
features, and applying classification algorithms that auto-
matically discriminate different qualities (see Sect. 2.4).
The motion capture systems are, however, intrusive as
they require a set of sensors or markers to be worn.
Often they also require calibration which is difficult in
a dynamically changing environment such as during the
artistic performance. Additionally, the high cost of the
technology and long post-processing are other important
shortcomings.

In this paper, we explore the audio signal as a source
of breathing data. It can be recorded with cheaper, low-
intrusive, yet portable and easy-to-use devices. This approach
is appropriate to capture e.g., dancers’ or athletes’ respiration
patterns, because they usually do not speak during a perfor-
mance, but they move a lot and cannot wear cumbersome
devices.

Herein, we propose two methods (see Fig. 1):

– unimodal approach; in the case, only audio data is pro-
cessed to extract the acoustic features; next they are used
to train supervised machine learning algorithms for the
binary classification,

– multimodal approach; two low-level features are
extracted such that one of them is from motion capture
data, and the other is from audio data. The degree of
synchronization between these two features is measured
using Event Synchronization algorithm [41]; the degree

of multimodal synchronization permits to discriminate
between the two qualities.

It is worth to highlight the differences between two meth-
ods. The first one uses only the audio of respiration and
computing some acoustic features but this computation may
require more computational power. The second approach is
based on very simple features that can be easily computed
in real-time even on mobile devices, but it requires exact
synchronization of data coming fromdifferent sensors. Addi-
tionally, the first method uses relatively rich information, and
thus, we expect that it provides high effectiveness for the dis-
crimination task. On the contrary, the second approach uses
only a small piece of respiration information and by using
this we want to see whether it is still possible to infer any
knowledge about the quality of corresponding movement.
Obviously, in the second case, we do not expect comparable
Effectiveness from our algorithm.

5 Experimental setup and the data collection

For the purpose of this work, we collected a set of short
trials of dancers performing whole body movements with
a requested movement quality. Each trial had a duration of
1.5–2 min. At the beginning of each session, dancers were
given definitions of themovement quality bymeans of textual
images. More details on the recording procedure is available
in [38]. The dancers were asked to perform: (i) an impro-
vised movements that, in their opinion, express the quality
convincingly, as well as (ii) several repetitions of predefined
sequences ofmovements by focusing on the givenmovement
quality.

We recorded multimodal data using (i) a Qualisys motion
capture system, tracking markers at 100 frames per second;
resulting data consists of the 3D positions of 60 markers; (ii)
one wireless microphone (mono, 48 kHz) placed close to the
dancer’s mouth, recording the sound of respiration; (iii) 2
video cameras (1280 × 720, at 50 fps).

The audio signal was recorded by a microphone with a
windproof mechanical filter positioned about 2 cm from the

Fig. 1 Two approaches for the classification of the movement qualities from the audio signal of respiration
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Fig. 2 Correct position of the microphone

Table 1 The quantity and duration of fragmented and fluid episodes

Class Number Total duration (min) Mean (s) SD (s)

Fragmented 28 7.3 16.3 9.5

Fluid 39 10.1 15.2 15

All 67 17.4 15.6 12.9

nose and mouth (see Fig. 2), ensuring stability of the bow on
the dancer’s head.

The freely available EyesWebXMI platform, developed at
InfoMus Lab, University of Genoa3 was used to synchronize
recordings and to analyze of the multimodal data.

Motion capture data was cleaned, missing data was filled
using linear and polynomial interpolation. 48 kHz audio sig-
nals have been pre-processed by applying a high pass filter
with a frequency of 200 Hz, as the breath has a bandwidth of
between 200 and 2000 Hz [18].

Each quality was performed by three dancers. Next, an
expert (by watching just a video) selected from the whole
recordings episodes in which dancers have better interpreted
one or the other quality. Thus, segmentation was based not
only on the dancer’s expressive intention, but also on the
observer’s perception regarding the movement quality. 67
episodes, which are 17.4 min in total, were selected (see
Table 1 for details).

6 Classification of fluid and fragmented
movements from the unimodal data

The unimodal approach consists of the following steps. First,
we automatically extract exhalation phases from the audio
corpus. As a result, each exhalation phase becomes an indi-
vidual segment.We focus on the exhalation signal only since,
as it can be seen in Fig. 3, it has a higher spectral energy and
generally has a better noise signal ratio (SNR) [1]. Next, we
extract Mel-Frequency Cepstral Coefficients (MFCCs), i.e.,

3 www.infomus.org.

Fig. 3 Top: inhalation and exhalation signals during movement; bot-
tom: the corresponding audio signals

the coefficients that defineMel-Frequency Cepstrum (MFC).
The MFC is the representation of the short-term power spec-
trum of a sound, based on theMel scale, which approximates
the human auditory system.

Consequently, we create four datasets by applying tech-
niques of feature reduction. In order to find the best classifi-
cationmethod we train eight classifiers on 2 out of 4 datasets.
In the final step the best classification algorithm (in terms of
F-score) is applied to all four datasets.

6.1 Data processing

The input to our model is a single exhalation. To obtain exha-
lations we performed automatic segmentation of the data
by modifying the algorithm proposed by Ruinskiy and col-
leagues [45]. The original algorithm was created to separate
respiration segments from voice segments in audio record-
ings. We adapted this approach to extract the exhalation
phases. For this purpose we built an exhalation template (i.e.,
mean cepstrogram matrix) from the manually annotated one
trial of respiration by the Dancer 1 (the total duration of the
annotated material was 6.2 s). Next, we applied the tem-
plate to 67 episodes. As a result, we obtained 467 exhalation
segments of total duration of 390.4 s, of which 232.03 s cor-
responds to fluid movements and 158.37 s corresponds to
fragmented movements (see Table 2).

AMann-Whitney test indicated that there is no significant
difference in the durations of fluid and fragmented segments
(U = 25590.5, p = .572). Thus the fluid and fragmented
segments cannot be distinguished by considering the dura-
tions of their exhalations (Table 3).

The number of fluid and fragmented segments is similar
for all three dancers with the small prevalence of fluid over
fragmented segments (54, 64 and 60% of fluid movements).
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Table 2 The duration of fluid and fragmented segments (only exhala-
tion phase)

Class Total (s) Mean (s) SD (s)

Fragmented 158.37 0.824 0.424

Fluid 232.03 0.844 0.558

All 390.40 0.836 0.507

Table 3 Average and standard deviations of F-score and Accuracy
obtained by SVM-LP

Dataset F-score Accuracy

AF-test 0.8689 (0.021) 0.8403 (0.027)

APCA 0.8571 (0.019) 0.8273 (0.023)

CF-test 0.8558 (0.027) 0.8272 (0.032)

CPCA 0.8201 (0.017) 0.7840 (0.023)

6.2 Feature extraction and reduction

Let us introduce three indexes i , j and k:

– i: index of a segment, i = 1,…, 467,
– j: index of a frame, j = 1,…, Ni ,
– k: index of a MFCC coefficient, k = 1,…, 26,

where Ni is the number of audio frames in the segment i (and
it varies between segments).

For each exhalation segment, an MFCC matrix is cre-
ated. We define the MFCC matrix of the i-th segment as
Mi = [mi

j,k] with j = 1, . . . Ni and k = 1, . . . 26. Each
element of the matrix corresponds to one audio frame of the
exhalation segment of a duration 10 ms. So, duration of the
i-th exhalation is 10 × Ni ms and mi

jk is k-th coefficient
MFCC of j-th frame of i-th segment.

Next, we reduce the dimensionality of the matrix Mi . For
thus purpose we use ten aggregation operators Φ0 −Φ9: Φ0-
Mean,Φ1-StandardDeviation,Φ2-Skewness,Φ3-Minimum,
Φ4-Maximum, Φ5-Range, Φ6-Kurtosis, Φ7-Zero Crossing
Rate (ZCR), Φ8-Linear Trend and Φ9-Median.

We create two different feature sets:

– feature set A is described by a matrix � of dimensions
467 × 130 where each row corresponds to 1 segment
and each column contains a result of the application of
one aggregation operator between Φ0 −Φ9 on Ni values
(i.e., all audio frames) of the coefficient k (where k =
1, . . . 13). Each operator is applied on thirteen MFCC
coefficients of the single segment, so we have 10 × 13

values for each segment. More precisely, an element of
the matrix � is computed according to the formula:

ai,h = Φ

⌊
h
13

⌋

j=1,...Ni
(mi

j,k) (1)

with h = 0, . . . , 129 and k = h mod 13.
– feature set C is described by a matrix � of dimensions

467 × 30 where each row corresponds to 1 segment and
each column is an aggregation of the MFCC coefficients.
More precisely each element in the matrix� is computed
as follows:

ci,h =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Φ1
j=1,...Ni

( Φh−1

k=1,...26
(mi

j,k)) i f h < 10

Φ3
j=1,...Ni

( Φh−11

k=1,...26
(mi

j,k)) i f 10≤ h< 20

Φ4
j=1,...Ni

( Φh−21

k=1,...26
(mi

j,k)) i f 20≤h < 30

(2)

with k = 1, . . . 26 and h = 0, . . . 29.

To avoid the problem of overfitting two standard approaches
for feature reduction were applied on � and �:

– F-test (20 best features for all the dancers),
– Principal Component Analysis (PCA; with 95% of total
variance explained).

By applying two features reduction techniques on two matri-
ces � and � we obtain four different datasets. Let us
introduce the notation Xy where X is the feature set (A or C)
and Y is reduction method applied on the feature set (F-test
or PCA).

Finally, we performed the exploratory analysis of the
four datasets using unsupervised clustering. K-means was
applied, and confusion matrices4 and Cohen κ values were
computed for each dataset. The highestCohenκ wasobtained
for CPCA (κ = 0.48), and the second best result was
observed for AF−test (κ = 0.4). Next, we compared the
results of two feature reduction approaches. This showed
that AF−test had numerically better result than AC−test

(κ = 0.28) while CPCA had numerically better result than
APCA (κ = − 0.04). Therefore, in next Section, we focus on
only two best datasets: AF−test and CPCA.

6.3 Classification

In the first step, eight algorithmswere tested: CART,Random
Forest (RF), ADA, LDA,NaiveBayes (NB), Neural Network
(NN), SVM with Gaussian Radial Basis Function (SVM-G)

4 While calculating confusionmatrices, the predicted class label of each
cluster was taken according to the majority of the samples real labels.
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and SVM with Laplacian RBF (SVM-LP) on AF−test and
CPCA.

6.3.1 Comparison of eight classifiers on two datasets

Figure 4 shows the training process. Each dataset was ran-
domly divided into 2 parts: the training set (70%) and the
testing set (30%). During the training phase the K-fold algo-
rithmwas usedwith K = 8 (inner loop). Next, each classifier
was evaluated using the testing set. The same procedure was
repeated 10 times: each time the training and testing setswere
chosen randomly (outer loop). Accuracy, F-score, Precision,
Recall were computed for each iteration of outer loop. In

Fig. 4 The overview of machine learning procedure

the last step mean and standard deviation of the Accuracy,
F-score, Precision, Recall were computed on 10 iterations
of the procedure. The corresponding results are presented in
Fig. 5, Tables 4 and 5.

To checkwhether there are significant differences between
8 machine learning algorithms within the dataset we used
ANOVA test. Only significant results are listed below. For
the post-hoc tests we used Bonferroni correction.

Given AF−T EST ANOVA showed significant difference
between the classifiers, F(7, 72) = 9.4815, p < .001. Using
F-score results post-hoc tests showed that:

– CART performed significantly worse than SVM-G, RF,
NB, SVM-LP (p < .05),

– ADA performed significantly worse than SVM-LP (p <

.05),
– LDA performed significantly worse than SVM-LP, NN,
RF, SVM-G (p < .05).

GivenCPCA ANOVAdid not show significant differences
between the classifiers F(7, 72) = 1.073, p = 0.3896.

A B

Fig. 5 Average values of the quality indices calculated for each algorithm on the AF−T EST and CPCA datasets: a F-score, b Accuracy

Table 4 Average values of the
quality indices calculated for
each algorithm on the AF−test
dataset

Algorithm Accuracy F-score Precision Recall

ADA 0.80 (0.032) 0.83 (0.027) 0.85 (0.046) 0.82 (0.033)

CART 0.76 (0.039) 0.79 (0.045) 0.80 (0.099) 0.80 (0.037)

LDA 0.75 (0.033) 0.79 (0.028) 0.81 (0.044) 0.79 (0.047)

NB 0.79 (0.043) 0.83 (0.033) 0.86 (0.038) 0.80 (0.042)

NN 0.81 (0.038) 0.84 (0.032) 0.83 (0.043) 0.85 (0.045)

RF 0.83 (0.030) 0.86 (0.024) 0.88 (0.035) 0.84 (0.032)

SVM-G 0.83 (0.022) 0.86 (0.018) 0.89 (0.026) 0.84 (0.025)

SVM-LP 0.84 (0.026) 0.87 (0.021) 0.89 (0.029) 0.85 (0.028)
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Table 5 Average values of the
quality indices calculated for
each algorithm on the CPCA
dataset

Algorithm Accuracy F-score Precision Recall

ADA 0.76 (0.034) 0.80 (0.030) 0.83 (0.039) 0.78 (0.026)

CART 0.75 (0.043) 0.80 (0.036) 0.85 (0.060) 0.76 (0.038)

LDA 0.76 (0.032) 0.80 (0.026) 0.84 (0.037) 0.76 (0.027)

NB 0.76 (0.030) 0.80 (0.027) 0.84 (0.050) 0.76 (0.023)

NN 0.76 (0.036) 0.79 (0.037) 0.80 (0.050) 0.79 (0.040)

RF 0.78 (0.044) 0.82 (0.037) 0.86 (0.047) 0.78 (0.030)

SVM-G 0.78 (0.032) 0.82 (0.027) 0.85 (0.034) 0.79 (0.026)

SVM-LP 0.79 (0.034) 0.82 (0.030) 0.83 (0.041) 0.81 (0.026)

6.3.2 Comparison of four datasets

Next we created classifiers using the SVM algorithm with
Laplacian Kernel for four datasets: AF−T EST , CF−T EST ,
APCA andCPCA. This algorithmwas chosen as it performed
the best in the previous section (see Table 4). The correspond-
ing results are presented in Table 3.

We checked whether there are significant differences
between four datasets by applying ANOVA on results of
each iteration of training procedure. A significant main
effect of dataset was observed for the F-score, F(3, 36) =
9.928, p < .001. Post hoc comparisons with Bonferoni cor-
rection showed that F-score ofCPCA was significantly lower
than F-score of AF−test (p < .001), APCA (p < .005) and
CF−test (p < .005).

6.4 Conclusion

In this section, we showed that it is possible to distinguish
fluid and fragmented movements from the audio of respira-
tion with the Accuracy up to 84% and F-score up to 87%.
We also compared two different feature reduction techniques
and two different features sets for the binary classification
task. The best result in terms of F-score (87%) was obtained
with SVM and 20 features computed from thirteen MFCC
coefficients. Similar result was observed when 11 features,
which were obtained after applying PCA on the same set of
MFCC-based features, were used (F-score 86%).

Regarding the differences between classifiers the only
significant performance drop was observed in the case of
decision tree based algorithms such as ADA and CART.
Regarding the performance difference of datasets, unsur-
prisingly the datasets extracted from matrix � performed
slightly better. It is worth to recall that the initial matrix �
is 4 times more bigger than the initial matrix �, the solution
based on matrix � was only 1% worse than the best solution
(see Table 3).

Some shortcomings of this study: first, the data of only
three dancers were used. Consequently, we could not val-
idate the classifiers with one-subject-out method. Second,

the inhalation data was excluded from the analysis. Possible
extensions include checking whether inhalation also brings
some useful information for the discrimination task. Third,
in the future, other audio features such as spectral centroid
will be extracted.

7 Classification of fluid and fragmented
movements from themultimodal data

Our multimodal approach is based on hypothesis (H1) that
different degree of synchronization can be observed for
movements performed with different movement qualities.
Our intuition is that if the fluid and fragmented movements
differ in terms of motor planning (see Sect. 3) also corre-
sponding respiration patterns may differ.

Our approach is as follows (Fig. 6): from the synchronized
recordings we extract one audio feature: the energy of the
audio signal, and one movement feature: the kinetic energy
of the whole body movement. These features were chosen as
they can be easily computed in real-time. In the second step,
we define events to be extracted from the time-series of the
features values and then we apply the Event Synchronization
algorithm [41] to compute the amount of synchronization
between them. Next, to check the hypothesis H1 we compare
the synchronization degree for twoqualities. If the hypothesis
H1 is confirmed we build classifiers to distinguish between
two qualities.

7.1 Data processing

For the purpose of this study the corpus described in Sect. 5
was used. 9 out of 67 episodes were excluded because of
the signal synchronization problems.The remaining episodes
have duration between 4 and 85 s. To obtain the segments
of comparable duration we split episodes by applying the
following procedure:

– episodes were split if they were at least twice longer than
the smallest one,
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Fig. 6 Block diagram of the
analysis procedure. Event
Synchronization takes as input
events detected in the
time-series of (1) energy of the
respiration audio signal and (2)
kinetic energy from motion
capture data

– episodeswere split into the segments of the sameduration
(whether possible).

Consequently, we obtained 192 segments belonging into
two classes:

– Fluid Movements Set (FluidMS) consisting of 102 seg-
ments (average segment duration 4.77 s, sd = 0.70 s);

– Fragmented Movements Set (FragMS) consisting of 90
segments (average segment duration 4.193 s, sd = 0.66 s).

7.2 Feature extraction

The audio signal was split in frames of 1920 samples. To
synchronize the motion capture data with the audio signal,
the former was undersampled at 25 fps. Next, body and
audio features were computed separately at this sampling
rate.

7.2.1 Motion data

Motion data was used to compute kinetic energy. This
feature was computed in two stages: first, 17 markers
from the initial set of 60 were used to compute the
instantaneous kinetic energy frame-by-frame. The veloci-
ties of single body markers contribute to the instantaneous
kinetic energy according to the relative weight of the
corresponding body parts as retrieved in anthropometric
tables [15]. In the second step, the envelope of the instan-
taneous kinetic energy was extracted using an 8-frames
buffer.

7.2.2 Respiration audio

The instantaneous energy of the audio signal was computed
using Root Mean Square (RMS). This returns one value for
every input frame. Next, we extracted the envelope of the
instantaneous audio energy using an 8-frames buffer.

7.3 Synchronization computation

To compute the degree of synchronization we use the Event
Synchronization (ES) algorithm [41]. It is used to measure
synchronization between two time series in which some
events are identified. Let us consider two time-series of fea-
tures: x1 and x2. For each time-series xi let us define t xi as the
time occurrences of events in xi . Thus, t

xi
j is the time of the

j-th event in time-series xi . Let mxi be the number of events
in xi . Then, the amount of synchronization Qτ is computed
as:

Qτ = cτ (x1|x2) + cτ (x2|x1)√
mx1mx2

(3)

where

cτ (x1|x2) =
mx1∑
i=1

mx2∑
j=1

J τ
i j (4)

and

J τ
i j =

⎧⎪⎨
⎪⎩

1 i f 0 < ti x1 − t j x2 < τ

1/2 i f ti x1 = t j x2

0 otherwise

(5)

τ defines the length of the synchronization window. Thus,
events contribute to the overall amount of synchronization,
only if they occur in a τ -long window.

In order to apply the ES algorithm to our data, two steps
were needed: (i) defining and retrieving events in two time-
series, and (ii) tuning the parameters of the ES algorithm.

7.3.1 Events definition

We defined events as the peaks (local maxima) of kinetic and
audio energy. To extract peaks, we applied a peak detector
algorithm that computes the position of peaks in an N-size
buffer, given a thresholdα defining theminimal relative “alti-
tude” of a peak. That is, at time p, the local maximum xp
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Fig. 7 Excerpts of the two time-series of energy (audio energy and
kinetic energy), representing an example of fluid and fragmentedmove-
ment respectively (lower panel), and the events extracted from the two
time-series and provided as input to the ES algorithm (upper panel)

is considered a peak if the preceding and the following local
maxima xi and x j are such that xi +α < xp and x j +α < xp,
i < p < j , and there is no other local maximum xk , such
that i < k < j . We empirically chose the buffer size to be 10
frames (corresponding to 400 ms) and α = 0.4465. Figure 7
shows excerpts of the two time-series, representing an exam-
ple of fluid and fragmented movement respectively, and the
events the peak detector extracted.

7.3.2 Algorithm tuning

At each execution, the ES algorithm works on a sliding win-
dow of the data and it computes one value – the amount of
synchronization Qτ . In our case, the value of ES is reset at
every sliding window. Thus, the past values of ES do not
affect the current output. The algorithm has two parameters:
the size of the sliding window dimsw and τ . The size of
the sliding window was set to 20 samples (corresponding to

800 ms at 25 fps). This value was chosen as the breath fre-
quency of a moving human is between 35 and 45 cycles per
minute. Thus, 800 ms corresponds to half of one breath. We
analyzed multimodal synchronization with all τ in interval
[4, dimsw ∗ 0.5] (i.e., not higher than half of the size of the
sliding window dimsw).

7.4 Data analysis

We utilized datasets FluidMS and FragMS to test hypothesis
(H1). For each segment and each considered value of τ , we
computed the average value (AvgQτ ) of the amount of syn-
chronization Qτ on the whole segment. Next, we computed
the mean and standard deviation of AvgQτ separately for all
fluid and fragmented segments (see Table 6).

To test the differences between the amount of synchro-
nization in the segments of FluidMS and FragMS we applied
Mann-Whitney test on values of AvgQτ . Similar resultswere
obtained for all the tested τ . A significant effect of Quali t y
for τ = 4 (two tailed, U = 3598, p < .01), τ = 6 (two
tailed,U = 3250.5 p < .001), τ = 8 (two tailed,U = 3307,
p < .001) and τ = 10 (two tailed, U = 3101, p < .001)
was observed.

According to the results, our hypothesis H1 was con-
firmed as multimodal synchronization between the energy
of the audio signal of respiration and the kinetic energy of
whole body movement allowed us to distinguish between the
selected qualities. In particular, audio respiration and kinetic
energy were found to be more synchronized in fragmented
movements than in fluid movements.

7.5 Classification

We train classifiers per each considered value of τ . We use
the same 8 classification algorithms that we have used in the
previous Section.

First we compute the following features: the average
value (AvgQτ ), the Variance (VarQτ ) and the median value
(MedQτ ) of the amount of synchronization Qτ on the whole
segment. The training procedure is the same as in the case
of unimodal algorithm (Sect. 6) with 8 fold inner loop and
10 repetitions of the outer loop. The results (see Table 7) are

Table 6 Average values and standard deviations of AvgQτ , VarQτ and MedQτ for fluid and fragmented movements

τ AvgQτ VarQτ MedQτ

Fluid Fragmented Fluid Fragmented Fluid Fragmented

τ = 4 0.130 (0.130) 0.180 (0.151) 0.235 (0.192) 0.295 (0.160) 0.020 (0.139) 0.064 (0.209)

τ = 6 0.184 (0.167) 0.275 (0.185) 0.290 (0.189) 0.351 (0.144) 0.076 (0.262) 0.157 (0.325)

τ = 8 0.249 (0.170) 0.339 (0.189) 0.363 (0.151) 0.386 (0.127) 0.085 (0.277) 0.219 (0.365)

τ = 10 0.284 (0.176) 0.399 (0.215) 0.389 (0.133) 0.401 (0.118) 0.122 (0.322) 0.321 (0.424)
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Table 7 Average values of the
F-score obtained for 8
algorithms

Algorithm τ = 4 τ = 6 τ = 8 τ = 10

ADA 0.67 (0.044) 0.68 (0.057) 0.69 (0.032) 0.71 (0.043)

CART 0.65 (0.077) 0.70 (0.066) 0.67 (0.045) 0.70 (0.046)

LDA 0.67 (0.042) 0.67 (0.062) 0.64 (0.036) 0.69 (0.053)

NB 0.65 (0.056) 0.66 (0.051) 0.65 (0.069) 0.72 (0.053)

NN 0.70 (0.040) 0.70 (0.060) 0.68 (0.046) 0.69 (0.074)

RF 0.67 (0.037) 0.63 (0.064) 0.63 (0.035) 0.66 (0.059)

SVM-G 0.67 (0.035) 0.67 (0.070) 0.67 (0.070) 0.64 (0.071)

SVM-LP 0.67 (0.038) 0.66 (0.048) 0.60 (0.040) 0.64 (0.065)

between 0.60 and 0.72 (F-score) depending on the dimension
of τ and the classification algorithm.

To checkwhether there are significant differences between
the different machine learning algorithms within the dataset
we used ANOVA test. Only significant results are listed
below. For the post-hoc tests we used Bonferroni correction.

Given τ = 4,ANOVAdid not show significant differences
between the classifiers, F(7, 72) = 1.095, p = .096.

Given τ = 6, ANOVA did not show significant difference
between the classifiers, F(7, 72) = 1.493, p = .183.

Given τ = 8, ANOVA showed significant difference
between the classifiers, F(7, 72) = 3.701, p < .005.
Post-hoc tests showed that the F-score for: SVM-LP was
significantly lower than the F-score for ADA (p < .01) and
NN (p < .05).

Given τ = 10, ANOVA showed significant difference
between the classifiers F(7, 72) = 2.869, p < .05 while
post-hoc tests did not show differences between any specific
pair.

7.6 Discussion

In this section, a multimodal approach for the discrimination
of fluid and fragmented movements, that is based on Event
Synchronization,was presented. First, we observed that there
is a significant difference in the amount of the synchroniza-
tion between fluid and fragmented movements. We used the
amount of synchronization as an input to the binary classi-
fier. The highest numerical score was for τ = 10 when NB
algorithm (F-score 0.72) was used.

When comparing the results obtained on the same dataset
in the Sects. 6.3 and 7.5 it can be seen that the results of sec-
ond approach are numericallyworse.However, it is important
to notice that the second solution uses only two very simple
features. Even with such a small amount of information as
the audio and movement data energy peaks contain, it is pos-
sible to compute whether the person moves fluidly or in a
fragmented manner.

Our long-term aim is to detect different movement quali-
ties without using a motion capture system. For this purpose,

in the future we plan to use the IMU sensors placed on the
dancers’ limbs, and to estimate their kinetic energy without
the need of using motion capture systems (see e.g., [9]).

It is important to notice that we did not ask dancers to
play dance patterns, but only to improvise typicalmovements
characterized by the two clusters of movement qualities. All
movements were therefore in normal standing positions (e.g.
not moving down to the floor). The availability of dancers is
to have a bettermastery and awareness ofmovement to obtain
a cleaner movement dataset. It is probable that dancers have
higher consciousness and control their respiration patterns
better than the average people. Thus, the further research is
needed to examine if this method can also be successful to
analyze average persons, e.g., not dancers.

8 Conclusion

In this paper, we proposed two novel approaches to dis-
tinguish fluid and fragmented movements using the audio
of respiration. In the first method, MFCC coefficients were
extracted from the single exhilarations and used as an input
to the binary classification algorithms. The second approach
computed the degree of synchronization of multimodal data,
consisting of energy peaks of audio signal of respiration and
body movements. This degree of synchronization was then
used to distinguish between the fluid and fragmented move-
ments. Both methods were validated on the same dataset.
According to the results, both techniques were successful
to distinguish fragmented and fluid movements and the best
results were obtained with SVM-LP (0.87).

The main contributions of this work are:

– according to the authors’ knowledge, it is the first attempt
to use information extracted from the respiration audio
to analyze how a person moves in terms of movement
qualities,

– unlike the most of previous works on respiration data, we
used a standard microphone placed near to the mouth to
capture respiration data,
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– whilstmost of theworks that explored the respiration data
mainly focused on the respiration rhythm, however, we
investigated other features e.g., intrapersonal synchro-
nization between two modalities.

The paper proves that audio respiration can be useful to
recognize howapersonmoves.Whilewedid not focus on any
specific Laban quality but we analyzed very broadmovement
categories, the positive results obtained in this exploratory
study, allows us to assume that, in the future, it will be
possible to apply our techniques to recognize more subtle
movements qualities from Laban’s [27] or other frameworks,
e.g., [10]. As the first step in this direction, and inspired by
recent works [16] we have been working on creating themul-
timodal dataset (containing IMU and audio respiration data)
ofmovement qualities of the expressive vocabulary [33]. Fur-
thermore, we expect that the methods proposed in this paper
can be useful to detect other human activities, cognitive and
emotional states.
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