

1

D2.1 – First version of the DANCE software libraries

Version Edited by Changes

1.0 UNIGE first version

D2.1 - First version of the DANCE software libraries

2

TABLE OF CONTENTS

1. INTRODUCTION.. 3

2. BLOCKS.. 3

In this section we provide some details on some of the main blocks for analysis of features and analysis primitives that are
included in this first version of the libraries. ... 3

2.1 Movement features ... 3
2.2.1 Feature: Fluidity .. 3

2.2.1.1 Mass Spring Humanoid Simulator .. 3
2.2.2 Feature: Impulsivity .. 4
Definition: an impulsive movement can be performed by a part of the body or by the whole body and is characterized by the
following properties: .. 4

2.2.2.1 Filtering and derivating (Savitzky-Golay filter) ... 4
2.2.2.2 Alpha-stable fit .. 4

2.2 Analysis primitives ... 5
2.2.1 Primitive: Synchronization .. 5

2.2.1.1 Peak Detector .. 6
2.2.1.2 Event Synchronization .. 6
2.2.1.3 SPIKE synchronization ... 6

3. PATCHES ... 7

3.1 Patches computing features and analysis primitives from IMUs ... 7

Table 1: Patches computing features and analysis primitives from IMUs (you need the sample IMU data to run these
patches) ... 7

3.2 Patches computing features and analysis primitives from motion capture data.. 9

Table 2: Patches computing features and analysis primitives from motion capture data (you need the sample motion
capture data to run these patches) ... 9

4. IMU AND MOTION CAPTURE SAMPLE DATA ... 10

5. RUN EYESWEB XMI, LOAD ONE OR MORE PATCHES AND EXECUTE THEM 11

APPENDIX .. 11

REFERENCES ... 11

D2.1 - First version of the DANCE software libraries

3

1. Introduction

The DANCE software libraries for the analysis of expressivity, emotion, and social signals are a collection of software modules,
components and applications that are integrated in the EyesWeb XMI research platform.

The EyesWeb XMI platform is a modular system that allows both expert (e.g., researchers in computer engineering)
and non-expert users (e.g., artists) to create multimodal installations in a visual way [13]. The platform provides
software modules, called blocks, that can be assembled intuitively (i.e., by operating only with mouse) to create
programs, called patches, that exploit system's resources such as multimodal files, webcams, sound cards, multiple
displays and so on. The platform, blocks (i.e., software modules) and patches (i.e., programs) can be freely
downloaded from the website:

http://dance.dibris.unige.it/index.php/dance-platform

This document presents an overview of the blocks included in the DANCE software libraries, developed in the
framework of the project. Then we provide a list of patches for the analysis of movement features (energy, slowness,
smoothness, weight, fluidity, suddenness, impulsivity), and analysis primitives (synchronization).

2. Blocks

In this section we provide some details on some of the main blocks for analysis of features and analysis primitives
that are included in this first version of the libraries.

2.1 Movement features

In the DANCE project we aim to innovate the state of art on the automated analysis of the expressive
movement. We consider movement as a communication channel allowing humans to express and perceive
implicit high-level messages, such as emotional states, social bonds, and so on.

That is, we are not interested in physical space occupation or movement direction per se, or in “functional” physical
movements: our interest is on the implications at the expressive level. For example: a hand movement direction to
the left or to the right may be irrelevant, instead the level of fluidity or impulsiveness of such movement might be
relevant. Example: let us consider the movement “Knocking at a door” [12]. We do not want to analyze the
functional action of “knocking at a door”, but the intention that lies behind it (e.g., the lover that knocks at the door
of his beloved). To study it, we focus on the sets of non-verbal expressive features that are described in detail in
Deliverable 5.1. In the following sections we illustrate a first set of models and algorithms for expressive movement
analysis that are embedded in these DANCE software platform.

2.2.1 Feature: Fluidity

Definition: A Fluid movement can be performed by a part of the body or by the whole body and is characterized by
the following properties:

Property 1 (P1): the movement of each involved joint of the (part of) the body is smooth, following the standard
definitions in the literature of biomechanics (e.g. [19], [20], [21]).

Property 2 (P2): the energy of movement (energy of muscles) is free to propagate along
the kinematic chains of (parts of) then body (e.g., from head to trunk, from shoulders to
arms) according to a coordinated wave-like propagation. That is, there is an efficient
propagation of movement along the kinematic chains, with a minimization of dissipation
of energy.

To implement P2, we propose a Mass-Spring Model.

2.2.1.1 Mass Spring Humanoid Simulator
This block implements a humanoid simulator in terms of a Mass-
Spring-Damper physical model. Mass-spring models have already
been exploited to simulate human gait, run, and jump [1, 2, 3, 4].
The model we propose represents the human body as a set of
interconnected masses, where each mass represents a body joint.

The model can be used to simulate, for example, the evolution of the movement of a
dancer, and to compare it with the movement of a real dancer. We tuned parameters of
the model in order to generate movements that are perceived as Fluid by human
observers. In this way, we can use this model as a reference for Fluidity: i.e., Fluidity is

A simple model, two masses (m1
and m2) are linked by a spring
(lk), and the resulting body
segment is influenced by a
rotational spring (rk) that
controls its rotation and
movement.

http://dance.dibris.unige.it/index.php/dance-platform

D2.1 - First version of the DANCE software libraries

4

computed in terms of distance of the real movement of a dancer with the simulated movement of the model.
In particular, we compute the mean jerk values of the shoulders, elbows and hands from both the real movement
data and the simulated movement. By measuring the distance of the overall jerk of the recorded data and the
simulated one we can identify a quantity (JI) that roughly estimates the Fluidity of movement of a given segment.
More details about the model are available in [8].

2.2.2 Feature: Impulsivity

Definition: an impulsive movement can be performed by a part of the body or by the whole body and is
characterized by the following properties:

Property 1 (P1): it is sudden, that is, it presents a high variation of speed (either from low to high or from high to
low).

Property 1 (P2): it is executed with no preparation.

To compute P1 we apply a Savitzky-Golay low-pass filter [18] to compute the body (or part of the body) speed.
Then, we perform an alpha-stable fit on the resulting speed to determine if it exhibits high variations.

2.2.2.1 Filtering and derivating (Savitzky-Golay filter)
The Savitzky-Golay filter is a low-pass filter able to compute not only the filtered signal but also the signal’s filtered
derivatives. For example, providing the sampled position data of the user’s hand to the filter we can compute the
hand’s filtered position, speed and acceleration. The filtering and derivation process is performed by computing a
weighted sum, that is, it can be performed in a very efficient way.

The Savitzky-Golay filtering block of the DANCE platform matches the operation of the Matlab
function sgolay(k,f). The filter order k must be less than the frame size f, that must be odd. If k = f-1,
the filter does not produce any smoothing.

2.2.2.2 Alpha-stable fit
Alpha-stable distributions have been introduced by [5] and applied in several works on signal
processing. They have been exploited as an alternative and more efficient approach than
Gaussian distributions to model impulsive noise in [6] or to define a model of graphical
textures exhibiting impulsive features that cannot be defined via Gaussian distributions [7].

Briefly speaking, an alpha-stable distribution can be modelled by a probability density function (pdf) characterized by
four parameters (α, β, γ, δ):

 α ∈ (0; 2] is the characteristic exponent that defines whether the distribution includes impulses;

 β ∈ [1; 1] is the determines the skewness of the pdf;

 γ > 0 is the dispersion parameter and corresponds to variance in Gaussian distributions;

 δ ∈ (1; 1) is the shift from the origin of center of the pdf and corresponds to the mean value in Gaussian
distributions.

In the top graph, two functions are displayed, the first obtained by setting α =1 and the second one by setting α
=1.5, and leaving the other parameters unchanged. A lower value of α corresponds to thicker pdf tails. The two
functions showed in the bottom graph exhibit γ values of 1 and 1.5.

D2.1 - First version of the DANCE software libraries

5

This block applies the stblfit function, that is, a C++ porting of the stable fit Matlab algorithm available here:
http://www.mathworks.com/matlabcentral/fileexchange/37514-stbl--alpha-stable-distributions-for-matlab

The stable fit block is exploited in the DANCE library to detect sudden movements. Taking as input the 3D right
hand position of the user, we consider a time window containing 3D position of the right hand and we compute the
absolute velocity of the hand by differentiating the hand position and computing the module of the vectors resulting
form the differentiation process (using a Savitzky-Golay filter). Then, we apply stblfit function. The α parameter, that
varies in (0,2], is scaled and multiplied by γ. This process implies 2 consequences:

(i) when α tends to zero, the scaled value of α tends to one and vice-versa;
(ii) movements exhibiting low (resp., high) velocity will correspond to low (resp., high) values of γ;

That is, the result of the product of α by γ will be high for sudden movements α) with large velocity variability (γ
high).

2.2 Analysis primitives

Analysis primitives are unary, binary, or n-ary operators that summarize with one or more values the temporal
development of low-level features in an analysis time unit (a movement unit or a time window). The simplest unary
analysis primitives are statistical moments (e.g., average, standard deviation, skewness, and kurtosis). Further
examples of unary operators, that are more complex, include shape (e.g., slope, peaks, valleys [14]), entropy [15],
recurrence [16], and various time-frequency transforms). Models for predictions (e.g., HMM) can also be applied as
in [17]. Binary and n-ary operators can be applied e.g., for measuring relationship between low-level features
computed on the movement of different body parts. For example, synchronization can be used to assess
coordination between hands. Causality can provide information on whether the movement of a joint leads or
follows the movement of another joint

2.2.1 Primitive: Synchronization

Synchronization is an important concept in human-human communication that has been widely addressed by the
HCI research community and in movement studies [24]. Research addressing synchronization in human-human or
human-machine interaction includes [16], an interactive system for active fruition of music based on inter-personal
synchronization, and [23], a rehabilitation system that demonstrates effectiveness in stabilizing the walking of
patients affected by Parkinson's disease and hemiplegia.

Synchronization deals with user's movement qualities both at the intra- and at the inter-personal level: that is, this
analysis primitive can be applied to different movement features. In the case of intra-personal synchronization, it is
used to determine whether the user's joints movement is coordinated [22]. In the case of inter-personal
synchronization, it is used to measure the level of, e.g., entrainment in a group of users [15].

In the DANCE platform we exploit Event Synchronization, a particular type of synchronization presented in [10].

Definition: the level of synchronization of two timeseries tvw and tve, we compute the level of synchronization Qτ as:

the quantity of synchronization Qτ depends on the normalized sum of coefficients cτ, expressing how much the
events contained in the timeseries tvw and tve are synchronized (that is, their distance in time is less than the threshold
τ):

the contributes of each event to the coefficients cτ are defined as:

http://www.mathworks.com/matlabcentral/fileexchange/37514-stbl--alpha-stable-distributions-for-matlab

D2.1 - First version of the DANCE software libraries

6

In this first version of the libraries we developed three blocks to measure intra-personal synchronization by applying
Event Synchronization [10]. The first one, given an input signals containing, for example, the speed of movement of
the user’s hand, finds the position of peaks (local maxima) of the signal. Then, a timeseries is generated, containing
zeros everywhere except on the samples corresponding to the signal’s peaks. The second one computes the Event
Synchronization defined by the above equations and the third one implements the SPIKE synchronization [11].

2.2.1.1 Peak Detector
Each time the block receives as input a numerical value it provides an output value that
can be:

 0: if no peak has been detected in the input signal;

 1: if a peak has been detected;

The block has an internal buffer, implemented as a FIFO shifting queue, on which the minimum and maximum
values are computed. If the input signal is decreasing and the difference between these two values is greater than a
threshold then a peak is detected and a value of 1 is provided as output.

2.2.1.2 Event Synchronization
The first synchronization technique we implemented is the Event Synchronization (ES) algorithm [9].
It is based on time delay patterns between a pair of time-series containing event occurrences.

Example: this block can receive two timeseries as inputs, corresponding to the peaks (i.e., local
maxima) of the velocity of user’s hands, captured by accelerometers or extracted from motion captured data. The
following figure illustrates the process of Simple Event Synchronization extraction:

The dancer’s movement is captured by either a set of markers of a motion capture system or a set of accelerometers.
Signals representing the user’s limbs velocities are computed. By applying the peak detection algorithm described in
Section 2.2.1.1 we obtain one timeseries per limb, containing zeros when no peak is detected and ones when a peak
is detected. We compute the degree of synchronization between pairs of timeseries.

2.2.1.3 SPIKE synchronization
The SPIKE synchronization algorithm quantifies the similarity between a set of input timeseries [11].
As illustrated in Section 2.2.1.1, we construct two timeseries containing events occurrence timings
depending on the peaks detected on the input signals provided to the Peak Detector block (e.g., the
peaks of the user’s hands velocity).

Unlike the Event Synchronization block, this block accepts as input two timeseries of different types: they can be
integer vectors (containing only -1 and 1, where the former indicates the absence of an event and the latter indicates
the presence of an event) or real numbers vectors in which each element represents the occurence time of an event.

D2.1 - First version of the DANCE software libraries

7

A coincidence profile, that is, a vector containing similarity information for each event of the input timeseries, is
provided as output by the block together with an overall synchronization value.

3. Patches

The DANCE software libraries are composed by three collections of patches: the first is based on IMU sensors
data, the second is based on motion captured data, thethird integrates IMUs and motion capture. In future versions
we will integrate other sensors (e.g., for respiration).

The blocks described in Section 2 have been exploited in combination of the existing blocks provided by the
EyesWeb XMI platform to define patches (i.e., programs) for the analysis of features and analysis primitives starting
from both IMU sensors and motion captured data.

Inertial Movement Units (IMUs) are devices endowed with sensors that capture, sample and transmit data in real-
time. Sensors, in the patches reported in Table 1, can capture data such as acceleration, gravity and magnetic field.

Motion captured (MoCap) data can be generated using dedicated hardware (e.g., the Qualisys motion capture
hardware, in the case of the DANCE project). The patches listed in Table 2 compute movement features and
primitives starting from MoCap data.

3.1 Patches computing features and analysis primitives from IMUs

Table 1 summarizes summarize the patches for computing features and analysis primitives from IMUs. To use
and test the patches:

1. dowload the playback patch
http://dance.dibris.unige.it/user_files/DANCE_Platform/release_march_2016/DANCE_platform_reader

.zip

2. download the zip file extract the IMU patches
http://dance.dibris.unige.it/user_files/DANCE_Platform/release_march_2016/DANCE_features_imu.zi

p

3. download and extract the sample IMU data and videos of sample dance fragments used by the patches to
demonstrate examples of computation of features; the data has to be extracted in the same folder of
the patches
http://dance.dibris.unige.it/index.php/2-pagedance/16-dance-platform#download-sample-data

4. run EyesWeb and load the patches indicated in the table for each feature, and run the patches in the
indicated order

1 inputs and outputs are sent by the IMUs to the patches via the OSC communication protocol, see
https://en.wikipedia.org/wiki/Open_Sound_Control

Table 1: Patches computing features and analysis primitives from IMUs1
(you need the sample IMU data to run these patches)

FEATURE/
ANALYSIS

PRIMITIVE
DESCRIPTION INPUT OUTPUT

Energy

Computes Kinetic Energy starting from 3D accelerations provided by
the sensors. Acceleration is integrated to compute velocity, since
Energy = 1/2*mass*velocity2

The resulting energy is normalized by the maximum energy that
depends on the accelerometers range.

° Linear
Acceleration
x,y,z from IMU

Energy index [0,1]

patch files:

1. DANCE_platform_reader.eywx
2. DANCE_library_energy_imu.eywx

http://dance.dibris.unige.it/user_files/DANCE_Platform/release_march_2016/DANCE_platform_reader.zip
http://dance.dibris.unige.it/user_files/DANCE_Platform/release_march_2016/DANCE_platform_reader.zip
http://dance.dibris.unige.it/user_files/DANCE_Platform/release_march_2016/DANCE_features_imu.zip
http://dance.dibris.unige.it/user_files/DANCE_Platform/release_march_2016/DANCE_features_imu.zip
http://dance.dibris.unige.it/index.php/2-pagedance/16-dance-platform#download-sample-data
https://en.wikipedia.org/wiki/Open_Sound_Control

D2.1 - First version of the DANCE software libraries

8

Slowness
This feature indicates whether the movement is performed slowly or
not. It is computed by measuring the mathematical smoothness on the
gyroscopes trajectories.

° Gravity x,y,z
from IMU

Slowness index
[0,1]

patch file : DANCE_library_slowness_imu.eywx

Smoothness
This feature is based on Energy and Slowness. If movement exhibits
high (respectively, low) slowness and no (respectively, many) energy
peaks are detected then smoothness is high (respectively, low).

° Acceleration
x,y,z from IMU

° Energy

° Slowness

Smoothness index
[0,1]

patch files:

1. DANCE_platform_reader.eywx
2. DANCE_library_smoothness_imu.eywx

Weight

This feature is related to the Laban’s Weight quality (for details, see:
Rudolf Laban and Frederick C. Lawrence. 1947 : Effort. Macdonald &
Evans.)

It is computed by extracting the Energy vertical component normalized
to the overall amount of Energy in the movement.

° Linear

Acceleration
x,y,z from IMU

° Gravity x,y,z

from IMU

Weight index [0,1]

patch files:

1. DANCE_platform_reader.eywx
2. DANCE_library_weight_imu.eywx

Suddenness

Impulsivity

Suddenness is computed using alfa-stable distributions. As described in
Section 2.2, an alpha-stable fit is performed on peaks of accelerations. A
movement is sudden when the product between alpha and gamma is
high (see Section 2.2). The algorithm takes as input the 3D joint
accelerations on a time window on which the suddenness has to be
computed, and then it fits it into the alfa-stable distribution. The output
of the app gets close to 1 (i.e., very sudden movements) when there are
abrupt increases of the joint's velocity in the input signal, and vice-
versa.

Impulsivity is computed as a product of the Suddenness algorithm (see
above) and the Direction Change (DC) algorithm. The Direction
Change algorithm detects significant changes in the acceleration
direction (i.e., considering two accelerations components, for example
ax, and ay, DC is detected when it appears that ax +c > ay changes to
ay +c > ax (c is a constant that is empirically set).

° Acceleration
x,y,z from
smartphone
(50Hz)

Impulsivity index

[-0,1]

Suddenness index

[--1,1]

patch files:

1. DANCE_platform_reader.eywx
2. DANCE_library_impulsivity-suddenness_imu.eywx

Event Sync

As described in Section 2.3, event synchronization is computed by
comparing events occurrences timings (i.e., peaks in joint accelerations).

The more such events are close upon time the higher the
synchronization level, and vice-versa.

° Events time
series (extracted
from IMU or
MoCap etc.)

Synchronization
index [0,1]

patch files:

1. DANCE_platform_reader.eywx
2. DANCE_library_event_synchronization.eywx

SPIKE Event
Sync

Another method to compute event synchronization is the SPIKE-
synchronization algorithm.

SPIKE uses event timings (see detail in Section 2.4) to compute three

° Events time
series (extracted
from IMU or

Synchronization
value [0,1]

Synchronization

D2.1 - First version of the DANCE software libraries

9

3.2 Patches computing features and analysis primitives from motion capture data

Table 2 summarizes the main patches for computing features and analysis primitives from motion capture data. To
use and test the patches:

1. dowload the playback patch
http://dance.dibris.unige.it/user_files/DANCE_Platform/release_march_2016/DANCE_platform_reader

.zip

2. download the zip file and extract the motion capture patches and extract the motion capture patches
http://dance.dibris.unige.it/user_files/DANCE_Platform/release_march_2016/DANCE_features_mocap.

zip

3. download and extract the sample motion capture data and videos of sample dance fragments used by the
patches to demonstrate examples of computation of features; the data has to be extracted in the same
folder of the patches
http://dance.dibris.unige.it/index.php/2-pagedance/16-dance-platform#download-sample-data

4. run EyesWeb and load the patches indicated in the table in the feature, and run the patches in the
indicated order

Table 2: Patches computing features and analysis primitives from motion capture data
(you need the sample motion capture data to run these patches)

FEATURE/
ANALYSIS

PRIMITIVE
DESCRIPTION INPUT OUTPUT

Impulsivity

Suddenness

Impulsivity is computed as a combination of the suddenness
algorithm (see above) and the direction change. The direction change
estimates whether the trajectory of the movement exhibits on the
time window significant direction change (i.e. about 90 degrees).

As described in Section 2.2 and in the previous table, suddenness is
computed by performing an alpha stable fit on the input data. For
example, the input data can be the 3D position of the user's hand.
Then, an alpha-stable fit is computed on a vector (i.e., a time series)
of position values over a short time window (e.g., 1 second). The
product of alpha and gamma (see Section 2.2 for details) represents
the level of suddenness.

A sudden movement is also impulsive if it is "non-planned": this lack
of intentionality and premeditation is modelled by computing the
direction change (i.e., the variation of movement's direction). If a
sudden movement is also non-prepared (that is, the hand movement
does not evolve on "a line") then it is also an impulsive movement.
For details, see:

R. Niewiadomski, M. Mancini, G. Volpe, and A. Camurri. 2015.
Automated Detection of Impulsive Movements in HCI. In Proceedings
of the 11th Biannual Conference on Italian SIGCHI Chapter (CHItaly 2015).
ACM, New York, NY, USA, 166-169.
DOI=http://dx.doi.org/10.1145/2808435.2808466

° Position x,y,z
from MoCap data

Impulsivity index
[0,1]

Suddenness index
[-1,1]

patch files:

1. DANCE_platform_reader.eywx
2. DANCE_library_impulsivity-suddenness_mocap.eywx

quantities:

- the degree of synchronization
- the mean distance between events occurrences (i.e., a

measure of the variance of events in the considered time)

the coincidence profile, a vector that binds a single synchronization
value to any event that has been found in the time series.

MoCap etc.) distance [0,1]

Coincidence profile

patch files:

1. DANCE_platform_reader.eywx
2. DANCE_library_spike_synchronization.eywx

http://dance.dibris.unige.it/user_files/DANCE_Platform/release_march_2016/DANCE_platform_reader.zip
http://dance.dibris.unige.it/user_files/DANCE_Platform/release_march_2016/DANCE_platform_reader.zip
http://dance.dibris.unige.it/user_files/DANCE_Platform/release_march_2016/DANCE_features_mocap.zip
http://dance.dibris.unige.it/user_files/DANCE_Platform/release_march_2016/DANCE_features_mocap.zip
http://dance.dibris.unige.it/index.php/2-pagedance/16-dance-platform#download-sample-data
http://dx.doi.org/10.1145/2808435.2808466

D2.1 - First version of the DANCE software libraries

10

Fluidity

This feature is on the humanoid model described in Section 2.1.1
based on masses and sprngs.

Given a rest position and an initial buffer of MoCap data, Fluidity is
computed as the distance between model evolution (that represents
the most fluid movement) and the real movement.

° Position x,y,z
from MoCap
data

Fluidity degree value

patch files:

1. DANCE_platform_reader.eywx
2. DANCE_fluidity_mocap.eywx

Event Sync

As described in Section 2.3, event synchronization is computed by
comparing events occurrences timings (i.e., peaks in joint
accelerations).

The more such events are close upon time the higher the
synchronization level, and vice-versa.

° Events time
series (extracted
from IMU or
MoCap etc.)

Synchronization
index [0,1]

patch files:

1. DANCE_platform_reader.eywx
2. DANCE_library_event_synchronization.eywx

SPIKE Event
Sync

Another method to compute event synchronization is the SPIKE-
synchronization algorithm.

SPIKE uses event timings (see detail in Section 2.4) to compute three
quantities:

- the degree of synchronization
- the mean distance between events occurrences (i.e., a

measure of the variance of events in the considered time)

the coincidence profile, a vector that binds a single synchronization
value to any event that has been found in the time series.

° Events time
series (extracted
from IMU or
MoCap etc.)

Synchronization
value [0,1]

Synchronization
distance [0,1]

Coincidence profile

patch files:

1. DANCE_platform_reader.eywx
2. DANCE_library_spike_synchronization.eywx

4. IMU and motion capture sample data

Download:
http://dance.dibris.unige.it/user_files/DANCE_Platform/release_march_2016/DANCE_sample_data.zip

As reported in the above paragraphs, you have to download and extract some sample data in order to run the
DANCE example patches. Without some sample data the example patches will not start, or will start but will not
provide any output. The sample data is contained in a zip file and it is a collection of 2 trials consisting in data
recorded by a motion capture system, a videocamera, and 4 IMU sensors placed on the dancer's limbs (wrists and
ankles). The zip archive contains the following folders and files:

 folder: imu

o file: 2015-12-15_t010_imu01_acceleration.txt (CSV format, 3D accelerometer data captured

by IMU number 1 during trial number 010 on 2015-12-15)

o file: 2015-12-15_t010_imu01_gyro.txt (CSV format, 3D gyroscope data captured by IMU

number 1 during trial number 010 on 2015-12-15)

o file: 2015-12-15_t010_imu01_magnetic.txt (CSV format, 3D compass data captured by IMU

number 1 during trial number 010 on 2015-12-15)

o (the same files are present for IMUs number 2, 3, and 4 and for trial number 011)

 folder: mocap

o file: 2015-12-15_t010_mocap.qam (3D model of the dancer captured during trial number 010

on 2015-12-15)

o file: 2015-12-15_t010_mocap.tsv (3D motion captured data of the dancer captured during

trial number 010 on 2015-12-15)

o file: 2015-12-15_t011_mocap.qam (3D model of the dancer captured during trial number 011

on 2015-12-15)

o file: 2015-12-15_t011_mocap.tsv (3D motion captured data of the dancer captured during

trial number 011 on 2015-12-15)

 folder: video

o file: 2015-12-15_t010_video01.avi (video and audio file of the dancer captured during

trial number 010 on 2015-12-15)

o file: 2015-12-15_t010_video01_timings.txt (timings of the video frames contained in the

corresponding video file 2015-12-15_t010_video01.avi)

http://dance.dibris.unige.it/user_files/DANCE_Platform/release_march_2016/DANCE_sample_data.zip

D2.1 - First version of the DANCE software libraries

11

o file: 2015-12-15_t011_video01.avi (video and audio file of the dancer captured during

trial number 011 on 2015-12-15)

o file: 2015-12-15_t011_video01_timings.txt (timings of the video frames contained in the

corresponding video file 2015-12-15_t011_video01.avi)

5. Run EyesWeb XMI, load one or more patches and execute them

When you downloaded EyesWeb, you installed it and you downloaded some patches plus the needed sample data

you are ready to run the patches:

1. run EyesWeb, by clicking on the corresponding shortcut in the start menu:

2. load an example patch: select the file->open menu item; browse for the patch file; select "open":

3. click on the "play" button:

4. depending on the example patch your executing, different display windows will appear

Appendix

The algorithms of the DANCE software libraries presented in this document are described in detail in the attached
papers:

 S. Piana, P. Alborno, R. Niewiadomski, M. Mancini, G. Volpe, A. Camurri, Movement Fluidity Analysis
Based on Performance and Perception, in press, Proceedings of ACM CHI 2016: Conference: Human
Factors in Computing System.

 P.Alborno, S. Piana, M. Mancini, R. Niewiadomski, G. Volpe, A. Camurri,, Analysis of intra personal
synchronization in full-body movements displaying different expressive qualities. Submitted to the
International Working Conference on Advanced Visual Interfaces - AVI 2016.

 S. Piana, A. Staglianò, F. Odone, A. Camurri, "Adaptive Body Gesture Representation for Automatic
Emotion Recognition", ACM Transactions on Interactive Intelligent Systems, to appear

References

[1] B. R. Whittington and D. G. Thelen. 2009. A simple mass-spring model with roller feet can induce the ground
reactions observed in human walking. Journal of biomechanical engineering.

D2.1 - First version of the DANCE software libraries

12

[2] G. Dalleau, A. Belli, M. Bourdin, and J. Lacour. 1998. The spring-mass model and the energy cost of treadmill
running. European journal of applied physiology and occupational physiology 77, 3 (1998), 257–263.

[3] O. Girard, J. Micallef, and G. P. Millet. 2011. Changes in spring-mass model characteristics during repeated
running sprints. European journal of applied physiology 111, 1 (2011), 125–134.

[4] L. P. Nedel and D. Thalmann. 1998. Real time muscle deformations using mass-spring systems. In Computer
Graphics International, 1998. Proceedings. IEEE, 156–165.

[5] P. Lévy. 1925. Calcul des probabilités, volume 9. Gauthier-Villars Paris.

[6] G. Tsihrintzis and C. Nikias. 1996. Fast estimation of the parameters of alpha-stable impulsive interference.
Signal Processing, IEEE Transactions on, 44(6):1492-1503.

[7] E. E. Kuruoglu and J. Zerubia. 2003. Skewed-stable distributions for modelling textures. Pattern Recognition
Letters, 24(1-3):339-348.

[8] S. Piana, P. Alborno, R. Niewiadomski, M. Mancini, G. Volpe, A. Camurri. 2016. Movement Fluidity Analysis
Based on Performance and Perception, in press, Proceedings of ACM CHI 2016: Conference: Human Factors in
Computing System.

[9] P.Alborno, S. Piana, M. Mancini, R. Niewiadomski, G. Volpe, A. Camurri. 2016. Analysis of intra personal
synchronization in full-body movements displaying different expressive qualities. Submitted to the International
Working Conference on Advanced Visual Interfaces

[10] R. Q. Quiroga, T. Kreuz, and P. Grassberger. 2002. Event synchronization: a simple and fast method to
measure synchronicity and time delay patterns. Physical review E, 66(4):041904

[11] T. Kreuz et al. 2015. SPIKY: A graphical user interface for monitoring spike train synchrony. Journal of
Neurophysiology

[12] F. E. Pollick et al. 2001. Perceiving affect from arm movement. Cognition 82.2.

[13] A. Camurri, P. Coletta, G. Varni, and S. Ghisio, “Developing multimodal interactive systems with eyesweb
xmi,” in Proceedings of the 2007 Conference on New Interfaces for Musical Expression (NIME07), 2007, p.
302305.

[14] G. Castellano, M. Mortillaro, A. Camurri, G. Volpe, and K. Scherer. 2008. Automated Analysis of Body
Movement in Emotionally Expressive Piano Performances. Music Perception, 26(2):103–119.

[15] D. Glowinski, M Mancini, R. Cowie, A. Camurri, C. Chiorri, C. Doherty. 2013. The movements made by
performers in a skilled quartet: a distinctive pattern, and the function that it serves. Front. Psychol. 4.

[16] G. Varni, G. Volpe, A. Camurri. 2010. “A System for Real-Time Multimodal Analysis of Nonverbal Affective
Social Interaction in User-Centric Media”. IEEE Transactions on Multimedia, Vol.12, No.6, pp.576-590.

[17] F. Bevilacqua, et al. 2009. "Continuous realtime gesture following and recognition." Gesture in embodied
communication and human-computer interaction. Springer Berlin Heidelberg. 73-84.

[18] A. Savitzky and M. J. E. Golay. 1964. Smoothing and differentiation of data by simplified least squares
procedures. Analytical chemistry, 36(8):1627–1639.

[19] P. Viviani and T. Flash. 1995. Minimum-jerk, two-thirds power law, and isochrony: converging approaches to
movement planning. Journal of Experimental Psychology: Human Perception and Performance 21, 1 (1995), 32.

[20] P. Morasso. 1981. Spatial control of arm movements. Experimental brain research 42, 2 (1981), 223–227.

[21] S. Piana, A. Stagliano’, A. Camurri, and F. Odone. 2015. Adaptive Body Gesture Representation for Automatic
Emotion Recognition. In Transactions on Interactive Intelligent System. ACM press, in printing.

[22] B. Mazzarino and M. Mancini. 2009. The need for impulsivity & smoothness-improving hci by qualitatively
measuring new high-level human motionfeatures. In SIGMAP, 62-67

[23] Y. Miyake. 2009. Interpersonal synchronization of body motion and the walk-mate walking support robot.
Robotics, IEEE Transactions on, 25(3):638-644

[24] N. Hogan and D. Sternad. 2007. On rhythmic and discrete movements: reflections, definitions and implications
for motor control. Experimental Brain Research, 181(1), 13-30

